Mercurial Hosting > luan
view website/src/manual.html.luan @ 1834:4ec3fd9e3999
update why.html
author | Franklin Schmidt <fschmidt@gmail.com> |
---|---|
date | Thu, 09 Jan 2025 18:06:23 -0700 |
parents | 50e570b598b2 |
children |
line wrap: on
line source
local Luan = require "luan:Luan.luan" local error = Luan.error local Io = require "luan:Io.luan" local Http = require "luan:http/Http.luan" local Shared = require "site:/lib/Shared.luan" local head = Shared.head or error() local docs_header = Shared.docs_header or error() local show_toc = Shared.show_toc or error() local show_content = Shared.show_content or error() local content = { intro = { title = "Introduction" content = function() %> <p> Luan is a high level programming language based on <a href="https://www.lua.org/">Lua</a>. A great strength of Lua is its simplicity and Luan takes this even further, being even simpler than Lua. The goal is to provide a simple programming language for the casual programmer with as few concepts as possible so that one can quickly learn the language and then easily understand any code written in Luan. </p> <p> Luan is implemented in Java and is tightly coupled with Java. So it makes a great scripting language for Java programmers. </p> <p> Unlike Lua which is meant to be embedded, Luan is meant to be a full scripting language. This done not by adding features to Luan, but rather by providing a complete set of libraries. </p> <% end } basic = { title = "Basic Concepts" content = function() %> <p> This section describes the basic concepts of the language. </p> <% end subs = { types = { title = "Values and Types" content = function() %> <p> Luan is a <em>dynamically typed language</em>. This means that variables do not have types; only values do. There are no type definitions in the language. All values carry their own type. </p> <p> All values in Luan are <em>first-class values</em>. This means that all values can be stored in variables, passed as arguments to other functions, and returned as results. </p> <p> There are eight basic types in Luan: <em>nil</em>, <em>boolean</em>, <em>number</em>, <em>string</em>, <em>binary</em>, <em>function</em>, <em>java</em>, and <em>table</em>. <em>Nil</em> is the type of the value <b>nil</b>, whose main property is to be different from any other value; it usually represents the absence of a useful value. <em>Nil</em> is implemented as the Java value <em>null</em>. <em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>. <em>Boolean</em> is implemented as the Java class <em>Boolean</em>. <em>Number</em> represents both integer numbers and real (floating-point) numbers. <em>Number</em> is implemented as the Java class <em>Number</em>. Any Java subclass of <em>Number</em> is allowed and this is invisible to the Luan user. Operations on numbers follow the same rules of the underlying Java implementation. <em>String</em> is implemented as the Java class <em>String</em>. <em>Binary</em> is implemented as the Java type <em>byte[]</em>. </p> <p> Luan can call (and manipulate) functions written in Luan and functions written in Java (see <a href="#fn_calls">Function Calls</a>). Both are represented by the type <em>function</em>. </p> <p> The type <em>java</em> is provided to allow arbitrary Java objects to be stored in Luan variables. A <em>java</em> value is a Java object that isn't one of the standard Luan types. Java values have no predefined operations in Luan, except assignment and identity test. Java values are useful when Java access is enabled in Luan. </p> <p> The type <em>table</em> implements associative arrays, that is, arrays that can be indexed not only with numbers, but with any Luan value except <b>nil</b>. Tables can be <em>heterogeneous</em>; that is, they can contain values of all types (except <b>nil</b>). Any key with value <b>nil</b> is not considered part of the table. Conversely, any key that is not part of a table has an associated value <b>nil</b>. </p> <p> Tables are the sole data-structuring mechanism in Luan; they can be used to represent ordinary arrays, sequences, symbol tables, sets, records, graphs, trees, etc. To represent records, Luan uses the field name as an index. The language supports this representation by providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>. There are several convenient ways to create tables in Luan (see <a href="#constructors">Table Constructors</a>). </p> <p> We use the term <em>sequence</em> to denote a table where the set of all positive numeric keys is equal to {1..<em>n</em>} for some non-negative integer <em>n</em>, which is called the length of the sequence (see <a href="#length">The Length Operator</a>). </p> <p> Like indices, the values of table fields can be of any type. In particular, because functions are first-class values, table fields can contain functions. Thus tables can also carry <em>methods</em> (see <a href="#fn_def">Function Definitions</a>). </p> <p> The indexing of tables follows the definition of raw equality in the language. The expressions <code>a[i]</code> and <code>a[j]</code> denote the same table element if and only if <code>i</code> and <code>j</code> are raw equal (that is, equal without metamethods). In particular, floats with integral values are equal to their respective integers (e.g., <code>1.0 == 1</code>). </p> <p> Luan values are <em>objects</em>: variables do not actually <em>contain</em> values, only <em>references</em> to them. Assignment, parameter passing, and function returns always manipulate references to values; these operations do not imply any kind of copy. </p> <p> The library function <a href="#Luan.type"><code>Luan.type</code></a> returns a string describing the type of a given value. </p> <% end } env = { title = "Environments" content = function() %> <p> The environment of a chunk starts with only one local variable: <code><a href="#require">require</a></code>. This function is used to load and access libraries and other modules. All other variables must be added to the environment using <a href="/manual.html#local_stmt">local declarations</a>. </p> <p> As will be discussed in <a href="#vars">Variables</a> and <a href=#assignment">Assignment</a>, any reference to a free name (that is, a name not bound to any declaration) <code>var</code> can be syntactically translated to <code>_ENV.var</code> if <code>_ENV</code> is defined. </p> <% end } error = { title = "Error Handling" content = function() %> <p> Luan code can explicitly generate an error by calling the <a href="#Luan.error"><code>error</code></a> function. If you need to catch errors in Luan, you can use the <a href="#try">Try Statement</code></a>. </p> <p> Whenever there is an error, an <em>error table</em> is propagated with information about the error. See <a href="#Luan.new_error"><code>Luan.new_error</code></a>. </p> <% end } meta = { title = "Metatables and Metamethods" content = function() %> <p> Every table in Luan can have a <em>metatable</em>. This <em>metatable</em> is an ordinary Luan table that defines the behavior of the original value under certain special operations. You can change several aspects of the behavior of operations over a value by setting specific fields in its metatable. For instance, when a table is the operand of an addition, Luan checks for a function in the field "<code>__add</code>" of the table's metatable. If it finds one, Luan calls this function to perform the addition. </p> <p> The keys in a metatable are derived from the <em>event</em> names; the corresponding values are called <ii>metamethods</em>. In the previous example, the event is <code>"add"</code> and the metamethod is the function that performs the addition. </p> <p> You can query the metatable of any table using the <a href="#Luan.get_metatable"><code>get_metatable</code></a> function. </p> <p> You can replace the metatable of tables using the <a href="#Luan.set_metatable"><code>set_metatable</code></a> function. </p> <p> A metatable controls how a table behaves in arithmetic operations, bitwise operations, order comparisons, concatenation, length operation, calls, and indexing. </p> <p> A detailed list of events controlled by metatables is given next. Each operation is identified by its corresponding event name. The key for each event is a string with its name prefixed by two underscores, '<code>__</code>'; for instance, the key for operation "add" is the string "<code>__add</code>". Note that queries for metamethods are always raw; the access to a metamethod does not invoke other metamethods. You can emulate how Luan queries a metamethod for an object <code>obj</code> with the following code: </p> <code block> raw_get(get_metatable(obj) or {}, "__" .. event_name) </code> <p> Here are the events: </p> <ul> <li><p> <b>"add": </b> the <code>+</code> operation. If any operand for an addition is a table, Luan will try to call a metamethod. First, Luan will check the first operand (even if it is valid). If that operand does not define a metamethod for the "<code>__add</code>" event, then Luan will check the second operand. If Luan can find a metamethod, it calls the metamethod with the two operands as arguments, and the result of the call (adjusted to one value) is the result of the operation. Otherwise, it raises an error. </p></li> <li><p> <b>"sub": </b> the <code>-</code> operation. Behavior similar to the "add" operation. </li> <li><p><b>"mul": </b> the <code>*</code> operation. Behavior similar to the "add" operation. </p></li> <li><p> <b>"div": </b> the <code>/</code> operation. Behavior similar to the "add" operation. </p></li> <li><p> <b>"idiv": </b> the <code>//</code> operation. Behavior similar to the "add" operation. </p></li> <li><p> <b>"mod": </b> the <code>%</code> operation. Behavior similar to the "add" operation. </p></li> <li><p> <b>"pow": </b> the <code>^</code> (exponentiation) operation. Behavior similar to the "add" operation. </p></li> <li><p> <b>"unm": </b> the <code>-</code> (unary minus) operation. Behavior similar to the "add" operation. </p></li> <li><p> <b>"concat": </b> the <code>..</code> (concatenation) operation. Behavior similar to the "add" operation. </p></li> <li><p> <b>"len": </b> the <code>#</code> (length) operation. If there is a metamethod, Luan calls it with the object as argument, and the result of the call (always adjusted to one value) is the result of the operation. If there is no metamethod but the object is a table, then Luan uses the table length operation (see <a href="#length">The Length Operator</a>). Otherwise, Luan raises an error. </p></li> <li><p> <b>"eq": </b> the <code>==</code> (equal) operation. Behavior similar to the "add" operation, except that Luan will try a metamethod only when the values being compared are both tables and they are not primitively equal. The result of the call is always converted to a boolean. </p></li> <li><p> <b>"lt": </b> the <code><</code> (less than) operation. Behavior similar to the "add" operation. The result of the call is always converted to a boolean. </p></li> <li><p> <b>"le": </b> the <code><=</code> (less equal) operation. Unlike other operations, The less-equal operation can use two different events. First, Luan looks for the "<code>__le</code>" metamethod in both operands, like in the "lt" operation. If it cannot find such a metamethod, then it will try the "<code>__lt</code>" event, assuming that <code>a <= b</code> is equivalent to <code>not (b < a)</code>. As with the other comparison operators, the result is always a boolean. </p></li> <li> <p> <b>"index": </b> The indexing access <code>table[key]</code>. This event happens when <code>key</code> is not present in <code>table</code>. The metamethod is looked up in <code>table</code>. </p> <p> Despite the name, the metamethod for this event can be any type. If it is a function, it is called with <code>table</code> and <code>key</code> as arguments. Otherwise the final result is the result of indexing this metamethod object with <code>key</code>. (This indexing is regular, not raw, and therefore can trigger another metamethod if the metamethod object is a table.) </p> </li> <li> <p> <b>"new_index": </b> The indexing assignment <code>table[key] = value</code>. Like the index event, this event happens when when <code>key</code> is not present in <code>table</code>. The metamethod is looked up in <code>table</code>. </p> <p> Like with indexing, the metamethod for this event can be either a function or a table. If it is a function, it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments. If it is a table, Luan does an indexing assignment to this table with the same key and value. (This assignment is regular, not raw, and therefore can trigger another metamethod.) </p> <p> Whenever there is a "new_index" metamethod, Luan does not perform the primitive assignment. (If necessary, the metamethod itself can call <a href="#Luan.raw_set"><code>raw_set</code></a> to do the assignment.) </p> </li> <li><p> <b>"gc":</b> This is when a table is garbage collected. When the table's <a href="https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#finalize--">finalize</a> method is called by the Java garbage collector, if there is a "<code>__gc</code>" metamethod then it is called with the table as a parameter. </p></li> </ul> <% end } gc = { title = "Garbage Collection" content = function() %> <p> Luan uses Java's garbage collection. </p> <% end } } } lang = { title = "The Language" content = function() %> <p> This section describes the lexis, the syntax, and the semantics of Luan. In other words, this section describes which tokens are valid, how they can be combined, and what their combinations mean. </p> <p> Language constructs will be explained using the usual extended BNF notation, in which {<em>a</em>} means 0 or more <em>a</em>'s, and [<em>a</em>] means an optional <em>a</em>. Non-terminals are shown like non-terminal, keywords are shown like <b>kword</b>, and other terminal symbols are shown like ‘<b>=</b>’. The complete syntax of Luan can be found in <a href="#9">§9</a> at the end of this manual. </p> <% end subs = { lex = { title = "Lexical Conventions" content = function() %> <p> Luan ignores spaces and comments between lexical elements (tokens), except as delimiters between names and keywords. Luan considers the end of a line to be the end of a statement. This catches errors and encourages readability. If you want to continue a statement on another line, you can use a backslash followed by a newline which will be treated as white space. </p> <p> <em>Names</em> (also called <em>identifiers</em>) in Luan can be any string of letters, digits, and underscores, not beginning with a digit. Identifiers are used to name variables, table fields, and labels. </p> <p> The following <em>keywords</em> are reserved and cannot be used as names: </p> <p list=keywords> <span>and</span> <span>break</span> <span>catch</span> <span>continue</span> <span>do</span> <span>else</span> <span>elseif</span> <span>end_do</span> <span>end_for</span> <span>end_function</span> <span>end_if</span> <span>end_try</span> <span>end_while</span> <span>false</span> <span>finally</span> <span>for</span> <span>function</span> <span>if</span> <span>in</span> <span>local</span> <span>nil</span> <span>not</span> <span>or</span> <span>repeat</span> <span>return</span> <span>then</span> <span>true</span> <span>try</span> <span>until</span> <span>while</span> </p> <p> Luan is a case-sensitive language: <code>and</code> is a reserved word, but <code>And</code> and <code>AND</code> are two different, valid names. </p> <p> The following strings denote other tokens: </p> <p list=tokens> <span>+</span> <span>-</span> <span>*</span> <span>/</span> <span>//</span> <span>%</span> <span>^</span> <span>#</span> <span>&</span> <span>~</span> <span>|</span> <span>==</span> <span>~=</span> <span><=</span> <span>>=</span> <span><</span> <span>></span> <span>=</span> <span>(</span> <span>)</span> <span>{</span> <span>}</span> <span>[</span> <span>]</span> <span>;</span> <span>,</span> <span>.</span> <span>..</span> <span>...</span> <span>%></span> <span><%</span> <span><%=</span> </p> <p> <em>Literal strings</em> can be delimited by matching single or double quotes, and can contain the following C-like escape sequences: '<code>\a</code>' (bell), '<code>\b</code>' (backspace), '<code>\f</code>' (form feed), '<code>\n</code>' (newline), '<code>\r</code>' (carriage return), '<code>\t</code>' (horizontal tab), '<code>\v</code>' (vertical tab), '<code>\\</code>' (backslash), '<code>\"</code>' (quotation mark [double quote]), and '<code>\'</code>' (apostrophe [single quote]). A backslash followed by a real newline results in a newline in the string. The escape sequence '<code>\z</code>' skips the following span of white-space characters, including line breaks; it is particularly useful to break and indent a long literal string into multiple lines without adding the newlines and spaces into the string contents. </p> <p> Luan can specify any character in a literal string by its numerical value. This can be done with the escape sequence <code>\x<em>XX</em></code>, where <em>XX</em> is a sequence of exactly two hexadecimal digits, or with the escape sequence <code>\u<em>XXXX</em></code>, where <em>XXXX</em> is a sequence of exactly four hexadecimal digits, or with the escape sequence <code>\<em>ddd</em></code>, where <em>ddd</em> is a sequence of up to three decimal digits. (Note that if a decimal escape sequence is to be followed by a digit, it must be expressed using exactly three digits.) </p> <p> Literal strings can also be defined using a long format enclosed by <em>long brackets</em>. We define an <em>opening long bracket of level <em>n</em></em> as an opening square bracket followed by <em>n</em> equal signs followed by another opening square bracket. So, an opening long bracket of level 0 is written as <code>[[</code>, an opening long bracket of level 1 is written as <code>[=[</code>, and so on. A <em>closing long bracket</em> is defined similarly; for instance, a closing long bracket of level 4 is written as <code>]====]</code>. A <em>long literal</em> starts with an opening long bracket of any level and ends at the first closing long bracket of the same level. It can contain any text except a closing bracket of the same level. Literals in this bracketed form can run for several lines, do not interpret any escape sequences, and ignore long brackets of any other level. Any kind of end-of-line sequence (carriage return, newline, carriage return followed by newline, or newline followed by carriage return) is converted to a simple newline. </p> <p> Any character in a literal string not explicitly affected by the previous rules represents itself. However, Luan opens files for parsing in text mode, and the system file functions may have problems with some control characters. So, it is safer to represent non-text data as a quoted literal with explicit escape sequences for non-text characters. </p> <p> For convenience, when the opening long bracket is immediately followed by a newline, the newline is not included in the string. As an example the five literal strings below denote the same string: </p> <code block> a = 'alo\n123"' a = "alo\n123\"" a = '\97lo\10\04923"' a = [[alo 123"]] a = [==[ alo 123"]==] </code> <p> A <em>numerical constant</em> (or <em>numeral</em>) can be written with an optional fractional part and an optional decimal exponent, marked by a letter '<code>e</code>' or '<code>E</code>'. Luan also accepts hexadecimal constants, which start with <code>0x</code> or <code>0X</code>. Hexadecimal constants also accept an optional fractional part plus an optional binary exponent, marked by a letter '<code>p</code>' or '<code>P</code>'. A numeric constant with a fractional dot or an exponent denotes a float; otherwise it denotes an integer. Examples of valid integer constants are </p> <pre> 3 345 0xff 0xBEBADA </pre> <p> Examples of valid float constants are </p> <pre> 3.0 3.1416 314.16e-2 0.31416E1 34e1 0x0.1E 0xA23p-4 0X1.921FB54442D18P+1 </pre> <p> A <em>comment</em> starts with a double hyphen (<code>--</code>) anywhere outside a string. If the text immediately after <code>--</code> is not an opening long bracket, the comment is a <em>short comment</em>, which runs until the end of the line. Otherwise, it is a <em>long comment</em>, which runs until the corresponding closing long bracket. Long comments are frequently used to disable code temporarily. </p> <% end } vars = { title = "Variables" content = function() %> <p> Variables are places that store values. There are three kinds of variables in Luan: global variables, local variables, and table fields. </p> <p> A single name can denote a global variable or a local variable (or a function's formal parameter, which is a particular kind of local variable): </p> <pre> var ::= Name </pre> <p> Name denotes identifiers, as defined in <a href="#lex">Lexical Conventions</a>. </p> <p> Local variables are <em>lexically scoped</em>: local variables can be freely accessed by functions defined inside their scope (see <a href="#visibility">Visibility Rules</a>). </p> <p> Before the first assignment to a variable, its value is <b>nil</b>. </p> <p> Square brackets are used to index a table: </p> <pre> var ::= prefixexp ‘<b>[</b>’ exp ‘<b>]</b>’ </pre> <p> The meaning of accesses to table fields can be changed via metatables. An access to an indexed variable <code>t[i]</code> is equivalent to a call <code>gettable_event(t,i)</code>. (See <a href="#meta">Metatables and Metamethods</a> for a complete description of the <code>gettable_event</code> function. This function is not defined or callable in Luan. We use it here only for explanatory purposes.) </p> <p> The syntax <code>var.Name</code> is just syntactic sugar for <code>var["Name"]</code>: </p> <pre> var ::= prefixexp ‘<b>.</b>’ Name </pre> <p> Global variables are not available by default. To enable global variable, you must define <code>_ENV</code> as a local variable whose value is a table. If <code>_ENV</code> is not defined, then an unrecognized variable name will produce a compile error. If <code>_ENV</code> is defined then an access to an unrecognized variable name will be consider a global variable. So then an acces to global variable <code>x</code> is equivalent to <code>_ENV.x</code>. Due to the way that chunks are compiled, <code>_ENV</code> is never a global name (see <a href="#env">Environments</a>). </p> <% end } stmt = { title = "Statements" content = function() %> <p> Luan supports an almost conventional set of statements, similar to those in Pascal or C. This set includes assignments, control structures, function calls, and variable declarations. </p> <% end subs = { blocks = { title = "Blocks" content = function() %> <p> A block is a list of statements, which are executed sequentially: </p> <pre> block ::= {stat} </pre> <p> Luan has <em>empty statements</em> that allow you to separate statements with semicolons, start a block with a semicolon or write two semicolons in sequence: </p> <pre> stat ::= ‘<b>;</b>’ </pre> <p> A block can be explicitly delimited to produce a single statement: </p> <pre> stat ::= <b>do</b> block end_do end_do ::= <b>end_do</b> | <b>end</b> </pre> <p> Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also sometimes used to add a <b>return</b> statement in the middle of another block (see <a href="#control">Control Structures</a>). </p> <% end } chunks = { title = "Chunks" content = function() %> <p> The unit of compilation of Luan is called a <em>chunk</em>. Syntactically, a chunk is simply a block: </p> <pre> chunk ::= block </pre> <p> Luan handles a chunk as the body of an anonymous function with a variable number of arguments (see <a href="#fn_def">Function Definitions</a>). As such, chunks can define local variables, receive arguments, and return values. </p> <p> A chunk can be stored in a file or in a string inside the host program. To execute a chunk, Luan first <em>loads</em> it, compiling the chunk's code, and then Luan executes the compiled code. </p> <% end } assignment = { title = "Assignment" content = function() %> <p> Luan allows multiple assignments. Therefore, the syntax for assignment defines a list of variables on the left side and a list of expressions on the right side. The elements in both lists are separated by commas: </p> <pre> stat ::= varlist ‘<b>=</b>’ explist varlist ::= var {‘<b>,</b>’ var} explist ::= exp {‘<b>,</b>’ exp} </pre> <p> Expressions are discussed in <a href="#expressions">Expressions</a>. </p> <p> Before the assignment, the list of values is <em>adjusted</em> to the length of the list of variables. If there are more values than needed, the excess values are thrown away. If there are fewer values than needed, the list is extended with as many <b>nil</b>'s as needed. If the list of expressions ends with a function call, then all values returned by that call enter the list of values, before the adjustment (except when the call is enclosed in parentheses; see <a href="#expressions">Expressions</a>). </p> <p> The assignment statement first evaluates all its expressions and only then the assignments are performed. Thus the code </p> <code block> i = 3 i, a[i] = i+1, 20 </code> <p> sets <code>a[3]</code> to 20, without affecting <code>a[4]</code> because the <code>i</code> in <code>a[i]</code> is evaluated (to 3) before it is assigned 4. Similarly, the line </p> <code block> x, y = y, x </code> <p> exchanges the values of <code>x</code> and <code>y</code>, and </p> <code block> x, y, z = y, z, x </code> <p> cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>. </p> <p> The meaning of assignments to global variables and table fields can be changed via metatables. An assignment to an indexed variable <code>t[i] = val</code> is equivalent to <code>settable_event(t,i,val)</code>. (See <a href="#meta">Metatables and Metamethods</a> for a complete description of the <code>settable_event</code> function. This function is not defined or callable in Luan. We use it here only for explanatory purposes.) </p> <p> An assignment to a global name <code>x = val</code> is equivalent to the assignment <code>_ENV.x = val</code> (see <a href="#env">Environments</a>). Global names are only available when <code>_ENV</code> is defined. </p> <% end } control = { title = "Control Structures" content = function() %> <p> The control structures <b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and familiar syntax: </p> <pre> stat ::= <b>while</b> exp <b>do</b> block end_while stat ::= <b>repeat</b> block <b>until</b> exp stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] end_if end_while ::= <b>end_while</b> | <b>end</b> end_if ::= <b>end_if</b> | <b>end</b> </pre> <p> Luan also has a <b>for</b> statement (see <a href="#for">For Statement</a>). </p> <p> The condition expression of a control structure must be a boolean. Any other value type will produce an error. This helps catch errors and makes code more readable. </p> <p> In the <b>repeat</b>–<b>until</b> loop, the inner block does not end at the <b>until</b> keyword, but only after the condition. So, the condition can refer to local variables declared inside the loop block. </p> <p> The <b>break</b> statement terminates the execution of a <b>while</b>, <b>repeat</b>, or <b>for</b> loop, skipping to the next statement after the loop: </p> <pre> stat ::= <b>break</b> </pre> <p> A <b>break</b> ends the innermost enclosing loop. </p> <p> The <b>continue</b> statement jumps to the beginning of a <b>while</b>, <b>repeat</b>, or <b>for</b> loop for next iteration, skipping the execution of statements inside the body of loop for the current iteration: </p> <pre> stat ::= <b>continue</b> </pre> <p> The <b>return</b> statement is used to return values from a function or a chunk (which is an anonymous function). Functions can return more than one value, so the syntax for the <b>return</b> statement is </p> <pre> stat ::= <b>return</b> [explist] [‘<b>;</b>’] </pre> <% end } ["for"] = { title = "For Statement" content = function() %> <p> The <b>for</b> statement works over functions, called <em>iterators</em>. On each iteration, the iterator function is called to produce a new value, stopping when this new value is <b>nil</b>. The <b>for</b> loop has the following syntax: </p> <pre> stat ::= <b>for</b> namelist <b>in</b> exp <b>do</b> block end_for namelist ::= Name {‘<b>,</b>’ Name} end_for ::= <b>end_for</b> | <b>end</b> </pre> <p> A <b>for</b> statement like </p> <code block> for <em>var_1</em>, ···, <em>var_n</em> in <em>exp</em> do <em>block</em> end </code> <p> is equivalent to the code: </p> <code block> do local <em>f</em> = <em>exp</em> while true do local <em>var_1</em>, ···, <em>var_n</em> = <em>f</em>() if <em>var_1</em> == nil then break end <em>block</em> end end </code> <p> Note the following: </p> <ul> <li> <code><em>exp</em></code> is evaluated only once. Its result is an <em>iterator</em> function. </li> <li> <code><em>f</em></code> is an invisible variable. The name is here for explanatory purposes only. </li> <li> You can use <b>break</b> to exit a <b>for</b> loop. </li> <li> The loop variables <code><em>var_i</em></code> are local to the loop; you cannot use their values after the <b>for</b> ends. If you need these values, then assign them to other variables before breaking or exiting the loop. </li> </ul> <% end } ["try"] = { title = "Try Statement" content = function() %> <p> The <b>try</b> statement has the same semantics as in Java. </p> <pre> stat ::= <b>try</b> block [<b>catch</b> Name block] [<b>finally</b> block] end_try end_try ::= <b>end_try</b> | <b>end</b> </pre> <% end } fn_stmt = { title = "Function Calls as Statements" content = function() %> <p> To allow possible side-effects, function calls can be executed as statements: </p> <pre> stat ::= functioncall </pre> <p> In this case, all returned values are thrown away. Function calls are explained in <a href="#fn_calls">Function Calls</a>. </p> <% end } logical_stmt = { title = "Logical Statement" content = function() %> <p> <a href="#logical_ops">Logical expressions</a> can be statements. This is useful in cases like this: </p> <code block> x==5 or error "x should be 5" </code> <% end } local_stmt = { title = "Local Declarations" content = function() %> <p> Local variables can be declared anywhere inside a block. The declaration can include an initial assignment: </p> <pre> stat ::= <b>local</b> namelist [‘<b>=</b>’ explist] </pre> <p> If present, an initial assignment has the same semantics of a multiple assignment (see <a href="#assignment">Assignment</a>). Otherwise, all variables are initialized with <b>nil</b>. </p> <p> A chunk is also a block (see <a href="#chunks">Chunks</a>), and so local variables can be declared in a chunk outside any explicit block. </p> <p> The visibility rules for local variables are explained in <a href="#visibility">Visibility Rules</a>. </p> <% end } template_stmt = { title = "Template Statements" content = function() %> <p>Template statements provide the full equivalent of <a href="https://en.wikipedia.org/wiki/Jakarta_Server_Pages">JSP</a> but in a general way. Template statements write to standard output. For example:</p> </p> <code block> local name = "Bob" %> Hello <%= name %>! Bye <%= name %>. <% </code> <p> is equivalent to the code: </p> <code block> local name = "Bob" require("luan:Io.luan").stdout.write( "Hello ", name , "!\nBye ", name , ".\n" ) </code> <% end } } } expressions = { title = "Expressions" content = function() %> <p> The basic expressions in Luan are the following: </p> <pre> exp ::= prefixexp exp ::= <b>nil</b> | <b>false</b> | <b>true</b> exp ::= Numeral exp ::= LiteralString exp ::= functiondef exp ::= tableconstructor exp ::= ‘<b>...</b>’ exp ::= exp binop exp exp ::= unop exp prefixexp ::= var | functioncall | ‘<b>(</b>’ exp ‘<b>)</b>’ </pre> <p> Numerals and literal strings are explained in <a href="#lex">Lexical Conventions</a>; variables are explained in <a href="#vars">Variables</a>; function definitions are explained in <a href="#fn_def">Function Definitions</a>; function calls are explained in <a href="#fn_calls">Function Calls</a>; table constructors are explained in <a href="#constructors">Table Constructors</a>. Vararg expressions, denoted by three dots ('<code>...</code>'), can only be used when directly inside a vararg function; they are explained in <a href="#fn_def">Function Definitions</a>. </p> <p> Binary operators comprise arithmetic operators (see <a href="#arithmetic">Arithmetic Operators</a>), relational operators (see <a href="#relational">Relational Operators</a>), logical operators (see <a href="#logical_ops">Logical Operators</a>), and the concatenation operator (see <a href="#concatenation">Concatenation</a>). Unary operators comprise the unary minus (see <a href="#arithmetic">Arithmetic Operators</a>), the unary logical <b>not</b> (see <a href="#logical_ops">Logical Operators</a>), and the unary <em>length operator</em> (see <a href="#length">The Length Operator</a>). </p> <p> Both function calls and vararg expressions can result in multiple values. If a function call is used as a statement (see <a href="#fn_stmt">Function Calls as Statements</a>), then its return list is adjusted to zero elements, thus discarding all returned values. If an expression is used as the last (or the only) element of a list of expressions, then no adjustment is made (unless the expression is enclosed in parentheses). In all other contexts, Luan adjusts the result list to one element, either discarding all values except the first one or adding a single <b>nil</b> if there are no values. </p> <p> Here are some examples: </p> <pre> f() -- adjusted to 0 results g(f(), x) -- f() is adjusted to 1 result g(x, f()) -- g gets x plus all results from f() a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil) a,b = ... -- a gets the first vararg parameter, b gets -- the second (both a and b can get nil if there -- is no corresponding vararg parameter) a,b,c = x, f() -- f() is adjusted to 2 results a,b,c = f() -- f() is adjusted to 3 results return f() -- returns all results from f() return ... -- returns all received vararg parameters return x,y,f() -- returns x, y, and all results from f() {f()} -- creates a list with all results from f() {...} -- creates a list with all vararg parameters {f(), nil} -- f() is adjusted to 1 result </pre> <p> Any expression enclosed in parentheses always results in only one value. Thus, <code>(f(x,y,z))</code> is always a single value, even if <code>f</code> returns several values. (The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code> or <b>nil</b> if <code>f</code> does not return any values.) </p> <% end subs = { arithmetic = { title = "Arithmetic Operators" content = function() %> <p> Luan supports the following arithmetic operators: </p> <ul> <li><b><code>+</code>: </b>addition</li> <li><b><code>-</code>: </b>subtraction</li> <li><b><code>*</code>: </b>multiplication</li> <li><b><code>/</code>: </b>float division</li> <li><b><code>//</code>: </b>floor division</li> <li><b><code>%</code>: </b>modulo</li> <li><b><code>^</code>: </b>exponentiation</li> <li><b><code>-</code>: </b>unary minus</li> </ul> <p> Addition, subtraction, multiplication, division, and unary minus are the same as these operators in Java. Exponentiation uses Java's <a href="https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#pow-double-double-">Math.pow</a> function. </p> <p> Floor division (//) is a division that rounds the quotient towards minus infinity, that is, the floor of the division of its operands. </p> <p> Modulo is defined as the remainder of a division that rounds the quotient towards minus infinite (floor division). (The Java modulo operator is not used.) </p> <% end } conversions = { title = "Coercions and Conversions" content = function() %> <p> Luan generally avoids automatic conversions. String concatenation automatically converts all of its arguments to strings. </p> <p> Luan provides library functions for explicit type conversions. </p> <% end } relational = { title = "Relational Operators" content = function() %> <p> Luan supports the following relational operators: </p> <ul> <li><b><code>==</code>: </b>equality</li> <li><b><code>~=</code>: </b>inequality</li> <li><b><code><</code>: </b>less than</li> <li><b><code>></code>: </b>greater than</li> <li><b><code><=</code>: </b>less or equal</li> <li><b><code>>=</code>: </b>greater or equal</li> </ul> <p> These operators always result in <b>false</b> or <b>true</b>. </p> <p> Equality (<code>==</code>) first compares the type of its operands. If the types are different, then the result is <b>false</b>. Otherwise, the values of the operands are compared. Strings, numbers, and binary values are compared in the obvious way (by value). </p> <p> Tables are compared by reference: two objects are considered equal only if they are the same object. Every time you create a new table, it is different from any previously existing table. Closures are also compared by reference. </p> <p> You can change the way that Luan compares tables by using the "eq" metamethod (see <a href="#meta">Metatables and Metamethods</a>). </p> <p> Java values are compared for equality with the Java <a href="https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-"><code>equals</code></a> method. </p> <p> Equality comparisons do not convert strings to numbers or vice versa. Thus, <code>"0"==0</code> evaluates to <b>false</b>, and <code>t[0]</code> and <code>t["0"]</code> denote different entries in a table. </p> <p> The operator <code>~=</code> is exactly the negation of equality (<code>==</code>). </p> <p> The order operators work as follows. If both arguments are numbers, then they are compared following the usual rule for binary operations. Otherwise, if both arguments are strings, then their values are compared according to the current locale. Otherwise, Luan tries to call the "lt" or the "le" metamethod (see <a href="#meta">Metatables and Metamethods</a>). A comparison <code>a > b</code> is translated to <code>b < a</code> and <code>a >= b</code> is translated to <code>b <= a</code>. </p> <% end } logical_ops = { title = "Logical Operators" content = function() %> <p> The logical operators in Luan are <b>and</b>, <b>or</b>, and <b>not</b>. The <b>and</b> and <b>or</b> operators consider both <b>false</b> and <b>nil</b> as false and anything else as true. Like the control structures (see <a href="#control">Control Structures</a>), the <b>not</b> operator requires a boolean value. </p> <p> The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>. The conjunction operator <b>and</b> returns its first argument if this value is <b>false</b> or <b>nil</b>; otherwise, <b>and</b> returns its second argument. The disjunction operator <b>or</b> returns its first argument if this value is different from <b>nil</b> and <b>false</b>; otherwise, <b>or</b> returns its second argument. Both <b>and</b> and <b>or</b> use short-circuit evaluation; that is, the second operand is evaluated only if necessary. Here are some examples: </p> <pre> 10 or 20 --> 10 10 or error() --> 10 nil or "a" --> "a" nil and 10 --> nil false and error() --> false false and nil --> false false or nil --> nil 10 and 20 --> 20 </pre> <p> (In this manual, <code>--></code> indicates the result of the preceding expression.) </p> <% end } concatenation = { title = "Concatenation" content = function() %> <p> The string concatenation operator in Luan is denoted by two dots ('<code>..</code>'). All operands are converted to strings. </p> <% end } length = { title = "The Length Operator" content = function() %> <p> The length operator is denoted by the unary prefix operator <code>#</code>. The length of a string is its number of characters. The length of a binary is its number of bytes. </p> <p> A program can modify the behavior of the length operator for any table through the <code>__len</code> metamethod (see <a href="#meta">Metatables and Metamethods</a>). </p> <p> Unless a <code>__len</code> metamethod is given, the length of a table <code>t</code> is defined as the number of elements in <em>sequence</em>, that is, the size of the set of its positive numeric keys is equal to <em>{1..n}</em> for some non-negative integer <em>n</em>. In that case, <em>n</em> is its length. Note that a table like </p> <pre> {10, 20, nil, 40} </pre> <p> has a length of <code>2</code>, because that is the last key in sequence. </p> <% end } precedence = { title = "Precedence" content = function() %> <p> Operator precedence in Luan follows the table below, from lower to higher priority: </p> <pre> or and < > <= >= ~= == .. + - * / % unary operators (not # -) ^ </pre> <p> As usual, you can use parentheses to change the precedences of an expression. The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>') operators are right associative. All other binary operators are left associative. </p> <% end } constructors = { title = "Table Constructors" content = function() %> <p> Table constructors are expressions that create tables. Every time a constructor is evaluated, a new table is created. A constructor can be used to create an empty table or to create a table and initialize some of its fields. The general syntax for constructors is </p> <pre> tableconstructor ::= ‘<b>{</b>’ fieldlist ‘<b>}</b>’ fieldlist ::= [field] {fieldsep [field]} field ::= ‘<b>[</b>’ exp ‘<b>]</b>’ ‘<b>=</b>’ exp | Name ‘<b>=</b>’ exp | exp fieldsep ::= ‘<b>,</b>’ | ‘<b>;</b>’ | <b>end_of_line</b> </pre> <p> Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry with key <code>exp1</code> and value <code>exp2</code>. A field of the form <code>name = exp</code> is equivalent to <code>["name"] = exp</code>. Finally, fields of the form <code>exp</code> are equivalent to <code>[i] = exp</code>, where <code>i</code> are consecutive integers starting with 1. Fields in the other formats do not affect this counting. For example, </p> <code block> a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 } </code> <p> is equivalent to </p> <code block> do local t = {} t[f(1)] = g t[1] = "x" -- 1st exp t[2] = "y" -- 2nd exp t.x = 1 -- t["x"] = 1 t[3] = f(x) -- 3rd exp t[30] = 23 t[4] = 45 -- 4th exp a = t end </code> <p> The order of the assignments in a constructor is undefined. (This order would be relevant only when there are repeated keys.) </p> <p> If the last field in the list has the form <code>exp</code> and the expression is a function call or a vararg expression, then all values returned by this expression enter the list consecutively (see <a href="#fn_calls">Function Calls</a>). </p> <p> The field list can have an optional trailing separator, as a convenience for machine-generated code. </p> <% end } fn_calls = { title = "Function Calls" content = function() %> <p> A function call in Luan has the following syntax: </p> <pre> functioncall ::= prefixexp args </pre> <p> In a function call, first prefixexp and args are evaluated. The value of prefixexp must have type <em>function</em>. This function is called with the given arguments. </p> <p> Arguments have the following syntax: </p> <pre> args ::= ‘<b>(</b>’ [explist] ‘<b>)</b>’ args ::= tableconstructor args ::= LiteralString </pre> <p> All argument expressions are evaluated before the call. A call of the form <code>f{<em>fields</em>}</code> is syntactic sugar for <code>f({<em>fields</em>})</code>; that is, the argument list is a single new table. A call of the form <code>f'<em>string</em>'</code> (or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>) is syntactic sugar for <code>f('<em>string</em>')</code>; that is, the argument list is a single literal string. </p> <% end } fn_def = { title = "Function Definitions" content = function() %> <p> The syntax for function definition is </p> <pre> functiondef ::= <b>function</b> funcbody funcbody ::= ‘<b>(</b>’ [parlist] ‘<b>)</b>’ block end_function end_function ::= <b>end_function</b> | <b>end</b> </pre> <p> The following syntactic sugar simplifies function definitions: </p> <pre> stat ::= <b>function</b> funcname funcbody stat ::= <b>local</b> <b>function</b> Name funcbody funcname ::= Name {‘<b>.</b>’ Name} [‘<b>:</b>’ Name] </pre> <p> The statement </p> <pre> function f () <em>body</em> end </pre> <p> translates to </p> <pre> f = function () <em>body</em> end </pre> <p> The statement <p> <pre> function t.a.b.c.f () <em>body</em> end </pre> <p> translates to </p> <pre> t.a.b.c.f = function () <em>body</em> end </pre> <p> The statement </p> <pre> local function f () <em>body</em> end </pre> <p> translates to </p> <pre> local f; f = function () <em>body</em> end </pre> <p> not to </p> <pre> local f = function () <em>body</em> end </pre> <p> (This only makes a difference when the body of the function contains references to <code>f</code>.) </p> <p> A function definition is an executable expression, whose value has type <em>function</em>. When Luan precompiles a chunk, all its function bodies are precompiled too. Then, whenever Luan executes the function definition, the function is <em>instantiated</em> (or <em>closed</em>). This function instance (or <em>closure</em>) is the final value of the expression. </p> <p> Parameters act as local variables that are initialized with the argument values: </p> <pre> parlist ::= namelist [‘<b>,</b>’ ‘<b>...</b>’] | ‘<b>...</b>’ </pre> <p> When a function is called, the list of arguments is adjusted to the length of the list of parameters if the list is too short, unless the function is a <em>vararg function</em>, which is indicated by three dots ('<code>...</code>') at the end of its parameter list. A vararg function does not adjust its argument list; instead, it collects all extra arguments and supplies them to the function through a <em>vararg expression</em>, which is also written as three dots. The value of this expression is a list of all actual extra arguments, similar to a function with multiple results. If a vararg expression is used inside another expression or in the middle of a list of expressions, then its return list is adjusted to one element. If the expression is used as the last element of a list of expressions, then no adjustment is made (unless that last expression is enclosed in parentheses). </p> <p> As an example, consider the following definitions: </p> <pre> function f(a, b) end function g(a, b, ...) end function r() return 1,2,3 end </pre> <p> Then, we have the following mapping from arguments to parameters and to the vararg expression: </p> <pre> CALL PARAMETERS f(3) a=3, b=nil f(3, 4) a=3, b=4 f(3, 4, 5) runtime error f(r(), 10) runtime error f(r()) runtime error g(3) a=3, b=nil, ... --> (nothing) g(3, 4) a=3, b=4, ... --> (nothing) g(3, 4, 5, 8) a=3, b=4, ... --> 5 8 g(5, r()) a=5, b=1, ... --> 2 3 </pre> <p> Results are returned using the <b>return</b> statement (see <a href="#control">Control Structures</a>). If control reaches the end of a function without encountering a <b>return</b> statement, then the function returns with no results. </p> <% end } backticks = { title = "Backticks" content = function() %> <p> A block between backticks is run and then whatever was sent to standard output is returned as a string. Examples: </p> <code block> local s = `%>1 + 1 = <%=1+1%><%` local s = ` fn(whatever) ` local s = `%> ... <%` </code> <p> Backticks complement <a href="#template_stmt">template statements</a>. </p> <% end } } } visibility = { title = "Visibility Rules" content = function() %> <p> Luan is a lexically scoped language. The scope of a local variable begins at the first statement after its declaration and lasts until the last non-void statement of the innermost block that includes the declaration. Consider the following example: </p> <code block> local x = 10 -- global to module do -- new block local x = x -- new 'x', with value 10 print(x) --> 10 x = x+1 do -- another block local x = x+1 -- another 'x' print(x) --> 12 end print(x) --> 11 end print(x) --> 10 (the global one) </code> <p> Notice that, in a declaration like <code>local x = x</code>, the new <code>x</code> being declared is not in scope yet, and so the second <code>x</code> refers to the outside variable. </p> <p> Because of the lexical scoping rules, local variables can be freely accessed by functions defined inside their scope. A local variable used by an inner function is called an <em>upvalue</em>, or <em>external local variable</em>, inside the inner function. </p> <p> Notice that each execution of a <b>local</b> statement defines new local variables. Consider the following example: </p> <code block> local a = {} local x = 20 for i=1,10 do local y = 0 a[i] = function () y=y+1; return x+y end end </code> <p> The loop creates ten closures (that is, ten instances of the anonymous function). Each of these closures uses a different <code>y</code> variable, while all of them share the same <code>x</code>. </p> <% end } } } libs = { title = "Standard Libraries" content = function() %> <p> The standard Luan libraries provide useful functions that are implemented both in Java and in Luan itself. How each function is implemented shouldn't matter to the user. Some of these functions provide essential services to the language (e.g., <a href="#Luan.type"><code>type</code></a> and <a href="#Luan.get_metatable"><code>get_metatable</code></a>); others provide access to "outside" services (e.g., I/O). </p> <% end subs = { default_lib = { title = "Default Environment" content = function() %> <p> This is provided by default as a local variable for any Luan code as described in <a href="#env">Environments</a>. </p> <% end subs = { require = { title = "require (mod_uri)" content = function() %> <p> Example use: </p> <code block> local Table = require "luan:Table.luan" </code> <p> Could be defined as: </p> <code block> local function require(mod_name) return <a href="#Package.load">Package.load</a>(mod_name) or <a href="#Luan.error">Luan.error</a>("module '"..mod_name.."' not found") end </code> <p> A special case is: </p> <code block> require "java" </code> <p> This enables Java in the current chunk if that chunk has permission to use Java. If the chunk doesn't have permission to use Java, then an error is thrown. </p> <% end } } } luan_lib = { title = "Basic Functions" content = function() %> <p> Include this library by: </p> <code block> local Luan = require "luan:Luan.luan" </code> <p> The basic library provides basic functions to Luan that don't depend on other libaries. </p> <% end subs = { ["Luan.arg"] = { title = "Luan.arg" content = function() %> <p>If Luan was run from the command line then this is a list of the command line arguments. For example if one runs Luan like this:</p> <code block> luan t.luan a b c </code> <p>Then Luan.arg will contain:</p> <code block> { [0] = "t.luan" [1] = "a" [2] = "b" [3] = "c" } </code> <p>And of course <code>#Luan.arg</code> will be <code>3</code>.</p> <% end } ["Luan.do_file"] = { title = "Luan.do_file ([uri])" content = function() %> <p> Could be defined as: </p> <code block> function Luan.do_file(uri) local fn = <a href="#Luan.load_file">Luan.load_file</a>(uri) or <a href="#Luan.error">Luan.error</a>("file '"..uri.."' not found") return fn() end </code> <% end } ["Luan.error"] = { title = "Luan.error (message)" content = function() %> <p> Throws an error containing the message. </p> <p> Could be defined as: </p> <code block> function Luan.error(message) <a href="#Luan.new_error">Luan.new_error</a>(message).throw() end </code> <% end } ["Luan.eval"] = { title = "Luan.eval (text [, source_name [, env]])" content = function() %> <p> Evaluates <code>text</code> as a Luan expression. </p> <p> Could be defined as: </p> <code block> function Luan.eval(text,source_name, env) return <a href="#Luan.load">Luan.load</a>( "return "..text, source_name or "eval", env )() end </code> <% end } ["Luan.get_metatable"] = { title = "Luan.get_metatable (table)" content = function() %> <p> If <code>table</code> does not have a metatable, returns <b>nil</b>. Otherwise, if the table's metatable has a <code>"__metatable"</code> field, returns the associated value. Otherwise, returns the metatable of the given table. </p> <% end } ["Luan.hash_code"] = { title = "Luan.hash_code (v)" content = function() %> <p> Returns the hash code of <code>v</code>. </p> <% end } ["Luan.ipairs"] = { title = "Luan.ipairs (t)" content = function() %> <p> Returns an iterator function so that the construction </p> <pre> for i,v in ipairs(t) do <em>body</em> end </pre> <p> will iterate over the key–value pairs (<code>1,t[1]</code>), (<code>2,t[2]</code>), ..., up to the first nil value. </p> <p> Could be defined as: </p> <code block> function Luan.ipairs(t) local i = 0 return function() if i < #t then i = i + 1 return i, t[i] end end end </code> <% end } ["Luan.load"] = { title = "Luan.load (text, [source_name [, env [, persist]]])" content = function() %> <p> Loads a chunk. </p> <p> The <code>text</code> is compiled. If there are no syntactic errors, returns the compiled chunk as a function; otherwise, throws an error. </p> <p> The <code>source_name</code> parameter is a string saying where the text came from. It is used to produce error messages. Defaults to "load". </p> <p> If the <code>env</code> parameter is supplied, it becomes the <code>_ENV</code> of the chunk. </p> <p> The <code>persist</code> parameter is a boolean which determines if the compiled code is persistently cached to a temporary file. Defaults to <code>false</code>. </p> <% end } ["Luan.load_file"] = { title = "Luan.load_file (file_uri)" content = function() %> <p> Similar to <a href="#Luan.load"><code>load</code></a>, but gets the chunk from file <code>file_uri</code>. <code>file_uri</code> can be a string or a uri table. </p> <% end } ["Luan.new_error"] = { title = "Luan.new_error (message)" content = function() %> <p> Creates a new error table containing the message assigned to "<code>message</code>". The error table also contains a <code>throw</code> function which throws the error. The table also contains a list of stack trace elements where each stack trace element is a table containing "<code>source</code>", "<code>line</code>", and possible "<code>call_to</code>". The table also has a metatable containing "<code>__to_string</code>" to render the error. </p> <p> To print the current stack trace, you could do: </p> <code block> Io.print( Luan.new_error "stack" ) </code> <% end } ["Luan.pairs"] = { title = "Luan.pairs (t)" content = function() %> <p> If <code>t</code> has a metamethod <code>__pairs</code>, calls it with <code>t</code> as argument and returns the result from the call. </p> <p> Otherwise, returns a function so that the construction </p> <pre> for k,v in pairs(t) do <em>body</em> end </pre> <p> will iterate over all key–value pairs of table <code>t</code>. </p> <% end } ["Luan.parse"] = { title = "Luan.parse (s)" content = function() %> <p>This Luan's equivalent to Javascript's JSON.parse(), but for a Luan value. In addition to the usual JSON values, Luan.parse allows long strings and allows specifying numeric types of <i>double</i>, <i>float</i>, <i>integer</i>, and <i>long</i>. For example:</p> <code block> local t = Luan.parse[=[ { nothing = nil t = true f = false s = "string" ls = [[long string]] n = 3 d = double(3) f = float(3) i = integer(3) l = long(3) list = { 1, 2, 3 } table = { one = 1 two = 2 three = 3 } ["ugly-key"] = "something" } ]=] </code> <% end } ["Luan.range"] = { title = "Luan.range (start, stop [, step])" content = function() %> <p> Based on <a href="https://docs.python.org/2/library/functions.html#range">the Python range() function</a>, this lets one iterate through a sequence of numbers. </p> <p> Example use: </p> <code block> for i in range(1,10) do Io.print("count up:",i) end for i in range(10,0,-1) do Io.print("count down:",i) end </code> <p> Could be defined as: </p> <code block> function Luan.range(start, stop, step) step = step or 1 step == 0 and <a href="#Luan.error">Luan.error</a> "bad argument #3 (step may not be zero)" local i = start return function() if step > 0 and i <= stop or step < 0 and i >= stop then local rtn = i i = i + step return rtn end end end </code> <% end } ["Luan.raw_equal"] = { title = "Luan.raw_equal (v1, v2)" content = function() %> <p> Checks whether <code>v1</code> is equal to <code>v2</code>, without invoking any metamethod. Returns a boolean. </p> <% end } ["Luan.raw_get"] = { title = "Luan.raw_get (table, index)" content = function() %> <p> Gets the real value of <code>table[index]</code>, without invoking any metamethod. <code>table</code> must be a table; <code>index</code> may be any value. </p> <% end } ["Luan.raw_len"] = { title = "Luan.raw_len (v)" content = function() %> <p> Returns the length of the object <code>v</code>, which must be a table or a string, without invoking any metamethod. Returns an integer. </p> <% end } ["Luan.raw_set"] = { title = "Luan.raw_set (table, index, value)" content = function() %> <p> Sets the real value of <code>table[index]</code> to <code>value</code>, without invoking any metamethod. <code>table</code> must be a table, <code>index</code> any value different from <b>nil</b>, and <code>value</code> any Luan value. </p> <% end } ["Luan.set_metatable"] = { title = "Luan.set_metatable (table, metatable)" content = function() %> <p> Sets the metatable for the given table. If <code>metatable</code> is <b>nil</b>, removes the metatable of the given table. If the original metatable has a <code>"__metatable"</code> field, raises an error. </p> <% end } ["Luan.stringify"] = { title = "Luan.stringify (v [,options])" content = function() %> <p> This Luan's equivalent to Javascript's JSON.stringify(), but for a Luan value. <code>v</code> is a value of any type which is converted to a string that is a Luan expression. <code>options</code> may be a table or a function. If <code>options</code> is a table, it may contain the following flags whose <code>true</code> value means: </p> <ul> <li><b>strict</b> - invalid types throw an error</li> <li><b>number_types</b> - numbers will be wrapped in functions for their type</li> <li><b>compressed</b> - eliminates white space</li> <li><b>inline</b> - on one line</li> <li><b>no_name_keys</b> - forces all keys to be of the form <code>["key"]</code></li> </ul> <p>If <code>options</code> is a function then this function should take an argument <code>stack</code> and return an <code>options</code> table. The <code>stack</code> will be a list of keys indicating where stringify is currently processing. This allows different options to be applied at different places in a data structure.</p> <% end } ["Luan.to_string"] = { title = "Luan.to_string (v)" content = function() %> <p> Receives a value of any type and converts it to a string in a human-readable format. </p> <p> If the metatable of <code>v</code> has a <code>"__to_string"</code> field, then <code>to_string</code> calls the corresponding value with <code>v</code> as argument, and uses the result of the call as its result. </p> <% end } ["Luan.type"] = { title = "Luan.type (v)" content = function() %> <p> Returns the type of its only argument, coded as a string. The possible results of this function are "<code>nil</code>" (a string, not the value <b>nil</b>), "<code>number</code>", "<code>string</code>", "<code>binary</code>", "<code>boolean</code>", "<code>table</code>", "<code>function</code>", and "<code>java</code>". </p> <% end } ["Luan.values"] = { title = "Luan.values (···)" content = function() %> <p> Returns a function so that the construction </p> <pre> for i, v in Luan.values(···) do <em>body</em> end </pre> <p> will iterate over all values of <code>···</code>. </p> <% end } ["Luan.VERSION"] = { title = "Luan.VERSION" content = function() %> <p> A global variable (not a function) that holds a string containing the current Luan version. </p> <% end } } } package_lib = { title = "Modules" content = function() %> <p> Include this library by: </p> <code block> local Package = require "luan:Package.luan" </code> <p> The package library provides basic facilities for loading modules in Luan. </p> <% end subs = { ["Package.load"] = { title = "Package.load (mod_uri)" content = function() %> <p> Loads the given module. The function starts by looking into the <a href="#Package.loaded"><code>Package.loaded</code></a> table to determine whether <code>mod_uri</code> is already loaded. If it is, then <code>Package.load</code> returns the value stored at <code>Package.loaded[mod_uri]</code>. Otherwise, it tries to load a new value for the module. </p> <p> To load a new value, <code>Package.load</code> first checks if <code>mod_uri</code> starts with "<b>java:</b>". If yes, then this is a Java class which is loaded by special Java code. </p> <p> Otherwise <code>Package.load</code> tries to read the text of the file referred to by <code>mod_uri</code>. If the file doesn't exist, then <code>Package.load</code> returns <b>false</b>. If the file exists, then its content is compiled into a chunk by calling <a href="#Luan.load"><code>Luan.load</code></a>. This chunk is run passing in <code>mod_uri</code> as an argument. The value returned by the chunk must not be <b>nil</b> and is loaded. </p> <p> If a new value for the module successful loaded, then it is stored in <code>Package.loaded[mod_uri]</code>. The value is returned. </p> <% end } ["Package.loaded"] = { title = "Package.loaded" content = function() %> <p> A table used by <a href="#Package.load"><code>Package.load</code></a> to control which modules are already loaded. When you load a module <code>mod_uri</code> and <code>Package.loaded[mod_uri]</code> is not <b>nil</b>, <a href="#Package.load"><code>Package.load</code></a> simply returns the value stored there. </p> <p> This variable is only a reference to the real table; assignments to this variable do not change the table used by <a href="#Package.load"><code>Package.load</code></a>. </p> <% end } } } string_lib = { title = "String Manipulation" content = function() %> <p> Include this library by: </p> <code block> local String = require "luan:String.luan" </code> <p> This library provides generic functions for string manipulation, such as finding and extracting substrings, and pattern matching. When indexing a string in Luan, the first character is at position 1 (not at 0, as in Java). Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the string. Thus, the last character is at position -1, and so on. </p> <% end subs = { ["String.char"] = { title = "String.char (···)" content = function() %> <p> Receives zero or more integers. Returns a string with length equal to the number of arguments, in which each character has the internal numerical code equal to its corresponding argument. </p> <% end } ["String.contains"] = { title = "String.contains (s, s2)" content = function() %> <p> Returns a boolean indicating whether the <code>s</code> contains <code>s2</code>. </p> <% end } ["String.digest_message"] = { title = "String.digest_message (algorithm, s)" content = function() %> <p>Returns a hex digest string of <code>s</code>. Could be defined as:</p> <code block> function String.digest_message(algorithm,s) return <a href="/manual.html#Binary.to_hex">Binary.to_hex</a>( <a href="/manual.html#Binary.digest_message">Binary.digest_message</a>( algorithm, <a href="/manual.html#String.to_binary">String.to_binary(s)</a> ) ) end </code> <% end } ["String.encode"] = { title = "String.encode (s)" content = function() %> <p> Encodes argument <code>s</code> into a string that can be placed in quotes so as to return the original value of the string. </p> <% end } ["String.ends_with"] = { title = "String.ends_with (s, s2)" content = function() %> <p> Returns a boolean indicating whether the <code>s</code> ends with <code>s2</code>. </p> <% end } ["String.find"] = { title = "String.find (s, s2 [, init])" content = function() %> <p> Looks for the first substring <code>s2</code> in the string <code>s</code>. If it finds a match, then <code>find</code> returns the indices of <code>s</code> where this occurrence starts and ends; otherwise, it returns <b>nil</b>. A third, optional numerical argument <code>init</code> specifies where to start the search; its default value is 1 and can be negative. </p> <p> If the pattern has captures, then in a successful match the captured values are also returned, after the two indices. </p> <% end } ["String.format"] = { title = "String.format (formatstring, ···)" content = function() %> <p> Returns a formatted version of its variable number of arguments following the description given in its first argument (which must be a string). The format string follows the same rules as the Java function <a href="https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#format-java.lang.String-java.lang.Object...-"><code>String.format</code></a> because Luan calls this internally. </p> <p> Note that Java's <code>String.format</code> is too stupid to convert between ints and floats, so you must provide the right kind of number. </p> <% end } ["String.lower"] = { title = "String.lower (s)" content = function() %> <p> Receives a string and returns a copy of this string with all uppercase letters changed to lowercase. All other characters are left unchanged. </p> <% end } ["String.regex"] = { title = "String.regex (s)" content = function() %> <p> Returns a <a href="#regex_table">regex</a> table for the pattern <code>s</code>. </p> <% end } ["String.regex_quote"] = { title = "String.regex_quote (s)" content = function() %> <p> Returns a string which matches the literal string <code>s</code> in a regular expression. This function is simply the Java method <a href="https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#quote-java.lang.String-"><code>Pattern.quote</code></a>. </p> <% end } ["String.repeated"] = { title = "String.repeated (s, n [, sep])" content = function() %> <p> Returns a string that is the concatenation of <code>n</code> copies of the string <code>s</code> separated by the string <code>sep</code>. The default value for <code>sep</code> is the empty string (that is, no separator). Returns the empty string if <code>n</code> is not positive. </p> <% end } ["String.replace"] = { title = "String.replace (s, target, replacement)" content = function() %> <p> Returns a string where each substring <code>target</code> in <code>s</code> is replaced by <code>replacement</code>. </p> <% end } ["String.reverse"] = { title = "String.reverse (s)" content = function() %> <p> Returns a string that is the string <code>s</code> reversed. </p> <% end } ["String.split"] = { title = "String.split (s, s2 [, limit])" content = function() %> <p> Splits <code>s</code> using substring <code>s2</code> and returns the results. If <code>limit</code> is positive, then only returns at most that many results. If <code>limit</code> is zero, then remove trailing empty results. </p> <% end } ["String.starts_with"] = { title = "String.starts_with (s, s2)" content = function() %> <p> Returns a boolean indicating whether the <code>s</code> starts with <code>s2</code>. </p> <% end } ["String.sub"] = { title = "String.sub (s, i [, j])" content = function() %> <p> Returns the substring of <code>s</code> that starts at <code>i</code> and continues until <code>j</code>; <code>i</code> and <code>j</code> can be negative. If <code>j</code> is absent, then it is assumed to be equal to -1 (which is the same as the string length). In particular, the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code> with length <code>j</code>, and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code> with length <code>i</code>. </p> <p> If, after the translation of negative indices, <code>i</code> is less than 1, it is corrected to 1. If <code>j</code> is greater than the string length, it is corrected to that length. If, after these corrections, <code>i</code> is greater than <code>j</code>, the function returns the empty string. </p> <% end } ["String.to_binary"] = { title = "String.to_binary (s)" content = function() %> <p> Converts a string to a binary by calling the Java method <a href="https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#getBytes--"><code>String.getBytes</code></a>. </p> <% end } ["String.to_number"] = { title = "String.to_number (s [, base])" content = function() %> <p> When called with no <code>base</code>, <code>to_number</code> tries to convert its argument to a number. If the argument is a string convertible to a number, then <code>to_number</code> returns this number; otherwise, it returns <b>nil</b>. The conversion of strings can result in integers or floats. </p> <p> When called with <code>base</code>, then <code>s</code> must be a string to be interpreted as an integer numeral in that base. In bases above 10, the letter '<code>A</code>' (in either upper or lower case) represents 10, '<code>B</code>' represents 11, and so forth, with '<code>Z</code>' representing 35. If the string <code>s</code> is not a valid numeral in the given base, the function returns <b>nil</b>. </p> <% end } ["String.trim"] = { title = "String.trim (s)" content = function() %> <p> Removes the leading and trailing whitespace by calling the Java method <a href="https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#trim--"><code>String.trim</code></a>. </p> <% end } ["String.unicode"] = { title = "String.unicode (s [, i [, j]])" content = function() %> <p> Returns the internal numerical codes of the characters <code>s[i]</code>, <code>s[i+1]</code>, ..., <code>s[j]</code>. The default value for <code>i</code> is 1; the default value for <code>j</code> is <code>i</code>. These indices are corrected following the same rules of function <a href="#String.sub"><code>String.sub</code></a>. </p> <% end } ["String.upper"] = { title = "String.upper (s)" content = function() %> <p> Receives a string and returns a copy of this string with all lowercase letters changed to uppercase. All other characters are left unchanged. The definition of what a lowercase letter is depends on the current locale. </p> <% end } } } regex_table = { title = "Regular Expressions" content = function() %> <p> Regular expressions are handled using a regex table generated by <a href="#String.regex">String.regex</a>. </p> <p> Pattern matching is based on the Java <a href="https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html">Pattern</a> class. </p> <% end subs = { ["regex.find"] = { title = "regex.find (s [, init])" content = function() %> <p> Looks for the first match of the regex in the string <code>s</code>. If it finds a match, then <code>find</code> returns the indices of <code>s</code> where this occurrence starts and ends; otherwise, it returns <b>nil</b>. A third, optional numerical argument <code>init</code> specifies where to start the search; its default value is 1 and can be negative. </p> <p> If the regex has captures, then in a successful match the captured values are also returned, after the two indices. </p> <% end } ["regex.gmatch"] = { title = "regex.gmatch (s)" content = function() %> <p> Returns an iterator function that, each time it is called, returns the next captures from the regex over the string <code>s</code>. If the regex specifies no captures, then the whole match is produced in each call. </p> <p> As an example, the following loop will iterate over all the words from string <code>s</code>, printing one per line: </p> <code block> local r = String.regex[[\w+]] local s = "hello world from Lua" for w in r.gmatch(s) do print(w) end </code> <p> The next example collects all pairs <code>key=value</code> from the given string into a table: </p> <code block> local t = {} local r = String.regex[[(\w+)=(\w+)]] local s = "from=world, to=Lua" for k, v in r.gmatch(s) do t[k] = v end </code> <p> For this function, a caret '<code>^</code>' at the start of a pattern does not work as an anchor, as this would prevent the iteration. </p> <% end } ["regex.gsub"] = { title = "regex.gsub (s, repl [, n])" content = function() %> <p> Returns a copy of <code>s</code> in which all (or the first <code>n</code>, if given) occurrences of the regex have been replaced by a replacement string specified by <code>repl</code>, which can be a string, a table, or a function. <code>gsub</code> also returns, as its second value, the total number of matches that occurred. The name <code>gsub</code> comes from <em>Global SUBstitution</em>. </p> <p> If <code>repl</code> is a string, then its value is used for replacement. The character <code>\</code> works as an escape character. Any sequence in <code>repl</code> of the form <code>$<em>d</em></code>, with <em>d</em> between 1 and 9, stands for the value of the <em>d</em>-th captured substring. The sequence <code>$0</code> stands for the whole match. </p> <p> If <code>repl</code> is a table, then the table is queried for every match, using the first capture as the key. </p> <p> If <code>repl</code> is a function, then this function is called every time a match occurs, with all captured substrings passed as arguments, in order. </p> <p> In any case, if the regex specifies no captures, then it behaves as if the whole regex was inside a capture. </p> <p> If the value returned by the table query or by the function call is not <b>nil</b>, then it is used as the replacement string; otherwise, if it is <b>nil</b>, then there is no replacement (that is, the original match is kept in the string). </p> <p> Here are some examples: </p> <code block> local r = String.regex[[(\w+)]] local x = r.gsub("hello world", "$1 $1") --> x="hello hello world world" local r = String.regex[[(\w+)]] local x = r.gsub("hello world", "$0 $0", 1) --> x="hello hello world" local r = String.regex[[(\w+)\s*(\w+)]] local x = r.gsub("hello world from Luan", "$2 $1") --> x="world hello Luan from" local r = String.regex[[\$(.*?)\$]] local x = r.gsub("4+5 = $return 4+5$", function(s) return load(s)() end) --> x="4+5 = 9" local r = String.regex[[\$(\w+)]] local t = {name="lua", version="5.3"} local x = r.gsub("$name-$version.tar.gz", t) --> x="lua-5.3.tar.gz" </code> <% end } ["regex.match"] = { title = "regex.match (s [, init])" content = function() %> <p> Looks for the first <em>match</em> of the regex in the string <code>s</code>. If it finds one, then <code>match</code> returns the captures from the regex; otherwise it returns <b>nil</b>. If the regex specifies no captures, then the whole match is returned. A third, optional numerical argument <code>init</code> specifies where to start the search; its default value is 1 and can be negative. </p> <% end } ["regex.matches"] = { title = "regex.matches (s)" content = function() %> <p> Returns a boolean indicating whether the regex can be found in string <code>s</code>. This function is equivalent to </p> <code block> return regex.match(s) ~= nil </code> <% end } ["regex.set"] = { title = "regex.set (pattern)" content = function() %> <p> Changes the regex pattern to <code>pattern</code>. </p> <% end } ["regex.split"] = { title = "regex.split (s [, limit])" content = function() %> <p> Splits <code>s</code> using the regex and returns the results. If <code>limit</code> is positive, then only returns at most that many results. If <code>limit</code> is zero, then remove trailing empty results. </p> <% end } } } binary_lib = { title = "Binary Manipulation" content = function() %> <p> Include this library by: </p> <code block> local Binary = require "luan:Binary.luan" </code> <% end subs = { ["Binary.base64_decode"] = { title = "Binary.base64_decode (s)" content = function() %> <p>Same as Java's <a href="https://docs.oracle.com/javase/8/docs/api/java/util/Base64.Decoder.html#decode-java.lang.String-">Base64.Decoder.decode</a>.</p> <% end } ["Binary.base64_encode"] = { title = "Binary.base64_encode (b)" content = function() %> <p>Same as Java's <a href="https://docs.oracle.com/javase/8/docs/api/java/util/Base64.Encoder.html#encodeToString-byte:A-">Base64.Encoder.encodeToString</a>.</p> <% end } ["Binary.binary"] = { title = "Binary.binary (···)" content = function() %> <p> Receives zero or more bytes (as integers). Returns a binary with length equal to the number of arguments, in which each byte has the internal numerical code equal to its corresponding argument. </p> <% end } ["Binary.byte"] = { title = "Binary.byte (b [, i [, j]])" content = function() %> <p> Returns the internal numerical codes of the bytes <code>b[i]</code>, <code>b[i+1]</code>, ..., <code>b[j]</code>. The default value for <code>i</code> is 1; the default value for <code>j</code> is <code>i</code>. These indices are corrected following the same rules of function <a href="#String.sub"><code>String.sub</code></a>. </p> <% end } ["Binary.digest_message"] = { title = "Binary.digest_message (algorithm, b)" content = function() %> <p>Implemented in Java as:</p> <code block> return <a href="https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html">MessageDigest</a>.<a href="https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html#getInstance-java.lang.String-">getInstance</a>(algorithm).<a href="https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html#digest-byte:A-">digest</a>(b); </code> <% end } ["Binary.to_hex"] = { title = "Binary.to_hex (b)" content = function() %> <p>Converts a binary to a hex string.</p> <% end } ["Binary.to_string"] = { title = "Binary.to_string (b [,charset])" content = function() %> <p> If <code>charset</code> is not nil then converts the binary <code>b</code> to a string using the Java <a href="https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#String-byte:A-java.lang.String-">String constructor</a>, else makes each byte a char. </p> <% end } } } table_lib = { title = "Table Manipulation" content = function() %> <p> Include this library by: </p> <code block> local Table = require "luan:Table.luan" </code> <p> This library provides generic functions for table manipulation. It provides all its functions inside the table <code>Table</code>. </p> <% end subs = { ["Table.case_insensitive"] = { title = "Table.case_insensitive ([tbl])" content = function() %> <p>Returns a table with case-insensitive string keys. Copies <code>tbl</code> or is empty.</p> <% end } ["Table.clear"] = { title = "Table.clear (tbl)" content = function() %> <p> Clears the table. </p> <% end } ["Table.concat"] = { title = "Table.concat (list [, sep [, i [, j]]])" content = function() %> <p> Given a list, returns the string <code>list[i]..sep..list[i+1] ··· sep..list[j]</code>. The default value for <code>sep</code> is the empty string, the default for <code>i</code> is 1, and the default for <code>j</code> is <code>#list</code>. If <code>i</code> is greater than <code>j</code>, returns the empty string. </p> <% end } ["Table.copy"] = { title = "Table.copy (tbl [, i [, j]])" content = function() %> <p> If <code>i</code> is <code>nil</code>, returns a shallow copy of <code>tbl</code>. Otherwise returns a new table which is a list of the elements <code>tbl[i] ··· tbl[j]</code>. By default, <code>j</code> is <code>#tbl</code>. </p> <% end } ["Table.insert"] = { title = "Table.insert (list, pos, value)" content = function() %> <p> Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>, shifting up the elements <code>list[pos], list[pos+1], ···, list[#list]</code>. </p> <% end } ["Table.is_empty"] = { title = "Table.is_empty (tbl)" content = function() %> <% end } ["Table.is_list"] = { title = "Table.is_list (tbl)" content = function() %> <% end } ["Table.java_to_table_deep"] = { title = "Table.java_to_table_deep (obj [, java_to_table_shallow])" content = function() %> <p>Recursively applies <code>java_to_table_shallow</code> to convert a Java object to nested tables. <code>java_to_table_shallow</code> defaults to <a href="#Table.java_to_table_shallow">Table.java_to_table_shallow</a>.</p> <% end } ["Table.java_to_table_shallow"] = { title = "Table.java_to_table_shallow (obj)" content = function() %> <p>Converts a Java object to a table. Works for collection types List, Map, Set, and Java arrays.</p> <% end } ["Table.pack"] = { title = "Table.pack (···)" content = function() %> <p> Returns a new table with all parameters stored into keys 1, 2, etc. and with a field "<code>n</code>" with the total number of parameters. Note that the resulting table may not be a sequence. </p> <% end } ["Table.remove"] = { title = "Table.remove (list, pos)" content = function() %> <p> Removes from <code>list</code> the element at position <code>pos</code>, returning the value of the removed element. When <code>pos</code> is an integer between 1 and <code>#list</code>, it shifts down the elements <code>list[pos+1], list[pos+2], ···, list[#list]</code> and erases element <code>list[#list]</code>; The index <code>pos</code> can also be 0 when <code>#list</code> is 0, or <code>#list + 1</code>; in those cases, the function erases the element <code>list[pos]</code>. </p> <% end } ["Table.size"] = { title = "Table.size (tbl)" content = function() %> <% end } ["Table.sort"] = { title = "Table.sort (list [, comp])" content = function() %> <p> Sorts list elements in a given order, <em>in-place</em>, from <code>list[1]</code> to <code>list[#list]</code>. If <code>comp</code> is given, then it must be a function that receives two list elements and returns true when the first element must come before the second in the final order (so that <code>not comp(list[i+1],list[i])</code> will be true after the sort). If <code>comp</code> is not given, then the standard Lua operator <code><</code> is used instead. </p> <p> The sort algorithm is not stable; that is, elements considered equal by the given order may have their relative positions changed by the sort. </p> <% end } ["Table.unpack"] = { title = "Table.unpack (list [, i [, j]])" content = function() %> <p> Returns the elements from the given list. This function is equivalent to </p> <code block> return list[i], list[i+1], ···, list[j] </code> <p> By default, <code>i</code> is 1 and <code>j</code> is <code>list.n or #list</code>. </p> <% end } } } number_lib = { title = "Number Manipulation" content = function() %> <p> Include this library by: </p> <code block> local Number = require "luan:Number.luan" </code> <% end subs = { ["Number.double"] = { title = "Number.double (x)" content = function() %> <p> Returns <code>x</code> as a double. </p> <% end } ["Number.float"] = { title = "Number.float (x)" content = function() %> <p> Returns <code>x</code> as a float. </p> <% end } ["Number.integer"] = { title = "Number.integer (x)" content = function() %> <p> If the value <code>x</code> is convertible to an integer, returns that integer. Otherwise throws an error. </p> <% end } ["Number.long"] = { title = "Number.long (x)" content = function() %> <p> If the value <code>x</code> is convertible to an long, returns that long. Otherwise throws an error. </p> <% end } ["Number.long_to_string"] = { title = "Number.long_to_string (i, radix)" content = function() %> <p> Converts long value <code>i</code> to a string by calling <code><a href="https://docs.oracle.com/javase/8/docs/api/java/lang/Long.html#toString-long-int-">Long.toString</a></code>. </p> <% end } ["Number.type"] = { title = "Number.type (x)" content = function() %> <p> Returns a string for the numeric type of <code>x</code>. Possible return values include "<code>integer</code>", "<code>long</code>", "<code>double</code>", and "<code>float</code>". </p> <% end } } } math_lib = { title = "Mathematical Functions" content = function() %> <p> Include this library by: </p> <code block> local Math = require "luan:Math.luan" </code> <p> This library provides basic mathematical functions. It provides all its functions and constants inside the table <code>Math</code>. </p> <% end subs = { ["Math.abs"] = { title = "Math.abs (x)" content = function() %> <p> Returns the absolute value of <code>x</code>. </p> <% end } ["Math.acos"] = { title = "Math.acos (x)" content = function() %> <p> Returns the arc cosine of <code>x</code> (in radians). </p> <% end } ["Math.asin"] = { title = "Math.asin (x)" content = function() %> <p> Returns the arc sine of <code>x</code> (in radians). </p> <% end } ["Math.atan"] = { title = "Math.atan (a)" content = function() %> <p> Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.</p> <% end } ["Math.atan2"] = { title = "Math.atan2 (y, x)" content = function() %> <p> Returns the arc tangent of <code>y/x</code> (in radians), but uses the signs of both parameters to find the quadrant of the result. (It also handles correctly the case of <code>x</code> being zero.) </p> <% end } ["Math.ceil"] = { title = "Math.ceil (x)" content = function() %> <p> Returns the smallest integral value larger than or equal to <code>x</code>. </p> <% end } ["Math.cos"] = { title = "Math.cos (x)" content = function() %> <p> Returns the cosine of <code>x</code> (assumed to be in radians). </p> <% end } ["Math.deg"] = { title = "Math.deg (x)" content = function() %> <p> Converts the angle <code>x</code> from radians to degrees. </p> <% end } ["Math.exp"] = { title = "Math.exp (x)" content = function() %> <p> Returns the value <em>e<sup>x</sup></em> (where <code>e</code> is the base of natural logarithms). </p> <% end } ["Math.floor"] = { title = "Math.floor (x)" content = function() %> <p> Returns the largest integral value smaller than or equal to <code>x</code>. </p> <% end } ["Math.fmod"] = { title = "Math.fmod (x, y)" content = function() %> <p> Returns the remainder of the division of <code>x</code> by <code>y</code> that rounds the quotient towards zero. </p> <% end } ["Math.huge"] = { title = "Math.huge" content = function() %> <p> A value larger than any other numerical value. </p> <% end } ["Math.log"] = { title = "Math.log (x [, base])" content = function() %> <p> Returns the logarithm of <code>x</code> in the given base. The default for <code>base</code> is <em>e</em> (so that the function returns the natural logarithm of <code>x</code>). </p> <% end } ["Math.max"] = { title = "Math.max (x, ···)" content = function() %> <p> Returns the argument with the maximum value, according to the Lua operator <code><</code>. </p> <% end } ["Math.max_integer"] = { title = "Math.max_integer" content = function() %> <p> An integer with the maximum value for an integer. </p> <% end } ["Math.min"] = { title = "Math.min (x, ···)" content = function() %> <p> Returns the argument with the minimum value, according to the Lua operator <code><</code>. </p> <% end } ["Math.min_integer"] = { title = "Math.min_integer" content = function() %> <p> An integer with the minimum value for an integer. </p> <% end } ["Math.modf"] = { title = "Math.modf (x)" content = function() %> <p> Returns the integral part of <code>x</code> and the fractional part of <code>x</code>. </p> <% end } ["Math.pi"] = { title = "Math.pi" content = function() %> <p> The value of <em>π</em>. </p> <% end } ["Math.rad"] = { title = "Math.rad (x)" content = function() %> <p> Converts the angle <code>x</code> from degrees to radians. </p> <% end } ["Math.random"] = { title = "Math.random ([m [, n])" content = function() %> <p> When called without arguments, returns a pseudo-random float with uniform distribution in the range <em>[0,1)</em>. When called with two integers <code>m</code> and <code>n</code>, <code>Math.random</code> returns a pseudo-random integer with uniform distribution in the range <em>[m, n]</em>. (The value <em>m-n</em> cannot be negative and must fit in a Luan integer.) The call <code>Math.random(n)</code> is equivalent to <code>Math.random(1,n)</code>. </p> <p> This function is an interface to the underling pseudo-random generator function provided by Java. No guarantees can be given for its statistical properties. </p> <% end } ["Math.sin"] = { title = "Math.sin (x)" content = function() %> <p> Returns the sine of <code>x</code> (assumed to be in radians). </p> <% end } ["Math.sqrt"] = { title = "Math.sqrt (x)" content = function() %> <p> Returns the square root of <code>x</code>. (You can also use the expression <code>x^0.5</code> to compute this value.) </p> <% end } ["Math.tan"] = { title = "Math.tan (x)" content = function() %> <p> Returns the tangent of <code>x</code> (assumed to be in radians). </p> <% end } } } } } } return function() Io.stdout = Http.response.text_writer() %> <!doctype html> <html> <head> <% head() %> <title>Luan Reference Manual</title> <style> p[list] { font-family: monospace; margin-left: 40px; } p[list] span { display: inline-block; } p[list=keywords] { max-width: 700px; } p[list=keywords] span { width: 100px; } p[list=tokens] { max-width: 400px; } p[list=tokens] span { width: 50px; } li[c_libs] li li > a { font-family: monospace; } </style> </head> <body> <% docs_header() %> <div content> <h1><a href="manual.html">Luan Reference Manual</a></h1> <p small> Original copyright © 2015 Lua.org, PUC-Rio. Freely available under the terms of the <a href="https://www.lua.org/license.html">Lua license</a>. Modified for Luan. </p> <hr> <h2>Contents</h2> <div toc> <% show_toc(content) %> </div> <hr> <% show_content(content,2) %> </div> </body> </html> <% end